

ALISEA ANNUAL GENERAL MEETING "Towards an Agroecology Transition"

24^{тн} – 25^{тн} OF JULY 2017 Vientiane Capital, Laos

Supported by:

Presented by:

Organized by:

The organization – Green Community Development Association

- NPA registered in 2012
 - Launching demo organic farm in Ban Nathom in 2016 as a learning venue for interested people and us
 - Producing vegetables
 - Early 2017, piloting a chicken project

The Project

Increasing Incomes of Organic Farmers through Insect-based Bio-conversion of Brewery Wastes into Animal Feed and Bio-Fertilisers in Rural Communities

01

Demonstrate that organic fertilizers produced through the cycle are efficient (form a productivity perspective) for farmers and easy to produce by themselves and around the year

02

Allow farmers to produce "organic eggs" (poultry), and demonstrate the cost advantage of the larvae feeds against conventional feeds.

03

Improve the yield of vegetable fields and so, increase farmer's incomes.

04

Increase profitability in raising organic chickens and produce organic eggs.

Objectives

Locations

Demo Farm in Ban Nathom started activities early 2016, producing clean vegetables and piloting sales to some restaurants in town
WASECO Experimental Platform in Ban Souan Mone

Central Facility (Waseco) farms black soldier fly larvae and provides mini larvae & training on larvae growing techniques

Nathom farm as demo farm receives mini Iarvae from Waseco & raises them for 7 days

Nathom farm separates big larvae from substrate (organic soil conditioner)

Nathom farm feeds large larvae (as high protein feed complement) directly to chickens <u>TESTING NEW</u> PRACTICES

Farm mixes substrate with soil (& other organic materials) to improve soil quality

Relating to Agroecology & Anticipated Contribution to Promoting Agroecological Transition – something to find out

Framework flow

Activities

Activities

- Hybrid breed aged 45 days (24 April)
- <u>Test 1</u> (T1) CP feed 100%
- <u>Test 2</u> (T2) CP feed (100% for 10-15 days, reduced by 50% and added veggies, larvae; other ingredients like maize and broken rice also added from 4 Jul)
- <u>Test 3</u> (T3) CP feed (100% for 10-15 days and larvae; and then maize added from 4 Jul)

Weight

	24-Apr	01-May	22-May	29-May	Average	07-Jun	13-Jun	20-Jun	27-Jun	04-Jul	Average
WEIGHT											
T1	1400	1490	1520	1580	1498	1530	1600	1600	1650	1770	1630
Т2	1400	1440	1560	1620	1505	1700	1700	1660	1620	1690	1674
Т3	1380	1480	1560	1660	1520	1600	1590	1590	1630	1670	1616

Costs - feeds

FROM 4 TO 24 JUL, ADDING MAIZE & BROKEN RICE (20 DAYS)							MAY 1-31				
	Feed					Feed					
	Consump	Costs	Eggs	Sales		Consump	Costs	Eggs	Sales		
T1	tion (Kg)	(Kip)	Produced	(Kip)		tion (Kg)	(Kip)	Produced	(Kip)		
CP 100%	66.8	267120	290	193343		89.6	358368	344	229345		
T2											
CP	6.6	26544				8.8	35392				
Veggies	12.8	0				17.0	0				
Maize	12.8	38304				0	0				
Broken rice	6.6	16590				0	0				
Larvae	8.5	0				12.0	0	_			
		81438	331	220677.7			35392	416	277347.2		
T3											
CP	18.9	75751				25.3	101001.6				
Maize	18.9	56813				25.3					
Larvae	8.4	0				12.0	0	_			
		132564.6	242	161341.4			101001.6	349	232678.3		

Relating to agroecology

Farmer communities to:

- improve and protect their soil condition by producing their own Organic Soil Conditioners and Bio-Fertilizers
- access affordable, high protein feed additive for their life stock
- develop feeding practices in compliance with organic and GAP standards

Beer Breweries to recycle 100% of their organic waste stream without any needs of high energy consuming technology.

Anticipated contribution to promoting agroecology transition

- This practice being scalable, affordable and easy to promote shall become a popular alternative to conventional feeds and fertilizers.
- They are very large amount of food and beverage industry waste available in Laos and that can be transformed using BSF technology.