VIETNAM ACADEMY OF AGRICULTURE SCIENCE NORTHERN MOUNTAINOUS AGRICULTURE AND FORESTRY SCIENCE

Policy Debate

From agroecological practices to policy approach: Challenges and lesions learned from NOMAFSI

- Application of ecological principles to design and manage agriculture sustainably

Agroforesty Policy. Integrated Food Safety Pest/Crop Control Managemen Policy t Policy Agroecology **Policies** Crop+ Livestock SRI policy System Managemen t Policy Standardize Organic Agri culture agri cultural Policy. production

- Ecological principles: interaction between living and non-living components

AE development and policy process for NOMAFSI

- Project trial/demos
- Identify the AE practices
- Small scale
 - Project models (KN, P)
 - Demonstrate the AE practices
 - Large scale

- Project modeling
- Validate the real results
- Large scale

- Project technology transfer
- Local extension participation
- ToT, trainings, field days; study tours
 - Project technology transfer
 - Protocol
 - Policy brief

- Policy advocacy
- Policy local influence
- Policy integration

NOMAFSI's mission on AE

- + Research for identifying the potential Agroforestry systems
- + Actively provide technical support for building Agro-forestry model at household or landscap level
- + Developing and promoting market-based agroforestry and forest rehabilitation options

AE development from **NOMAFSI**

- Mulching for maize cultivated on slopping land: Reduce erosion 50-90%; Yield increase 20-60%
- Mini-terrace and DMC: Reduce erosion 65-99%; Yield increase 30-60%.
- Maize intercropped with legume: Economic efficiency increased 20% 30%
- Cassava intercropped with legume: Soil fertility improvement
- Fruit intercropped with cover crop (Arachis pintoi)

AE development from **NOMAFSI**

- Building capacity for farmers: VietGAPs, safe area production: safe for the users, safe for food products and,
 safe for the environment
- Agroecological pest controls (ACP): Pheromone, biochemical pesticide development,
- Agroforestry: Evaluate the benefit of shade trees and/fruit tree on the areas of Arabica coffee, tea
- Vegetable systems: Diverse varieties, less chemical use, more market approaches

AE development from **NOMAFSI**

• Testing and cultivating improved forages and legumes on sloping land for cattle feed: New forages (grasses and legume) intercropped with timber and fruit farms.

Main results

- Increase in crop and livestock productivity, quality and safety
- Additional income and local livelihood
- Resilience (nutrition recycle, pests interactive functioning, soil water, biogas) to climate change
- Reduce soil erosions, soil nutrient losses/protect soil fertility and reduce water contamination
- Social network strengthen, gender improvement and ethnic inclusion

Extension and communication in policy support

- Conferences, forums, workshops:
 - 3rd CA conference in Southeast Asia (2012, Hanoi)
 - EA stakeholders' workshops, schools (2017 in Hanoi, Can Tho, My Tho)
 - Brisbance conference 2014
- Network CANSEA and AliSEA; organizations: VAAS network, ACIAR, ICRAF, CIRAD, CIAT, Aus4Innovation
 - Exhibition "Conservation Agriculture and Direct Seeding in Mulch-based Cropping Systems in Southeast Asia and the World" in Hanoi, 2011
 - Showing film and discussions on CA sustainable intensification, in Hanoi, 2013
- Trainings: farmers and extension officers
 - Agro-ecology and agroecological control of crops (ACP)
 - Conservation agriculture(CA): NOMAFSI & SFRI researchers; NOMAFSI became the leading institution in CA R4D in Vietnam
- Communication documents
 - Policy brief (cassava)
 - Protocols (sloping land cultivation technique); safe tea protocol
 - Technical reports

AE challenges for **NOMAFSI** missions

- Understand success achieved remains fragile:
 - Unsustainable adoption of project practices (case of Agroforestry/ADAM)
 - Unsustainability of project results to scale out (case of ACIAR maize and other)
 - No direct policy on agroecological practices
 - Driving force of market dynamic, climate change and local culture interest
 - AE practices are unclearly proving the effectiveness/complicated/
 - Internal project design systems exclude the policy advocacy
 - Role of DARD in transferring AE practices

Causes of unaccepted/limited AE adoption

- Limited and complicated/difficult for application
- High input costs, high risks
- Unforeseen the immediate effectiveness and likely to have in a long term
- Required more labor
- Do not have markets/branch names of agroecological products, prices are not different
- Consider local cultural context in conducting agroecological practices
- Small scale: household scales/farmer groups scale, difficult to compliant with standards (VietGAP, GPS...)
- Do not have agroecological practices integrating in province/national policies
- Equipment and tool are not suitable and need to improve

Labor pressure

Practices/items	Year 1 (man- day/ha)	Year 2 (man-day/ha)	Year 3 (man- day/ha)	Total (man-day/ha)	Increased (%)
Control (mono-orange)	120	140	160	420	0%
Orange + legums	140	192	207	539	28,3%
Orange + Grass Grass trip	130	170	185	485	15,48%
Orange + Grass Grass trip + legum	145	190	210	545	29,7%
Orange + tea	130	140	170	440	4,7%
Orange + taro	130	180	200	510	21,4%

Labor required on agroforestry practices are all higher (4.7%-28%) than conventional practices

Economic benefit

• Economic benefit from agroforestry demos in Van Chan Yen Bai show higher input costs and negative economic benefit at the first 2 years while only starting having positive profit from the third year

Unsuitable innovative tool

Innovative equipment and tools are not suitable and need to improve

Recommendations

Agroecological practices are required:

- Develop agroecological policy/integrating to local/national policies to support
- Have agroecological markets/standards/branch to support agroecological products
- Practices in landscape levels/community approach
- Co-funding are recommended from Central-local-NGO-private sectors to leverage the funding resources and effective transfer to end-users
- More hand-on participatory research and trainings
- Incentives for agroecological practices
- New introduced techniques should be integrated between agriculture and livestock (cycle system)

Thank you

